High Spatiotemporal Observations of Temperature at the Main Endeavour Field using Fiber Optic Distributed Temperature Sensing

> Endeavour Workshop 2024 November 11th, 2024

Presented by: Johann Becker **Co-Authored by:** Roxanne Beinart², Adam Soule², Pete Girguis³, Brennan T. Phillips^{1,2} 1. University of Rhode Island Department of Ocean Engineering 2. University of Rhode Island Graduate School of Oceanography (GSO) 3. Harvard University

Distributed Temperature Sensors (DTS) Measure Temperature Synoptically over an Optical Fiber

Multimode Fiber:

DTS Sensing Fiber is Effectively Equivalent to an Array of Independent Temperature Sensors

- Range: 10 km
- Spatial Resolution: 0.25 m
- Measurement Interval: >5 sec
- Temperature precision: up to 0.01 °C
- Samples on up to 4 fibers sequentially
- MM Fiber 0.25 cm diameter, 6 inch bend radius (or often less)

ABE Vent Field, Lau Basin 2022

pc. Tanika Ladd

Lau Basin, 2022

DTS Observatory Lander
DTS Sensing Fiber
Active Hydrothermal Venting

 18m total deployed fiber length (~72 nodes on seafloor)

• DTS: 1-min sample averaging & sampling interval, 4 days continuously

• SBE 39+: 2Hz sampling frequency, 12 days continuously

pc. Alex Ingle (SOI)

Iguanas Vent Field, Western Galápagos Spreading Center (WGSC) 2023

Western Galápagos Spreading Center, 2023

- I Tilt Current Meter (TCM)
- A DTS Observatory Lander
- DTS Sensing Fiber
- 🗼 Active Hydrothermal Venting
- 💹 Mussel Bed
- 130m & 156m deployed fiber length (1144 nodes on seafloor)
- DTS: 1-min sampling averaging & 2-min sampling interval, 7.5 days continuously
- SBE 39+: 2Hz sampling frequency, 15 days continuously
- **3x TCM:** 1-min sampling interval, 15 days continuously
- **9x iButton Thermistors:** 6-min sampling interval, 15 days continuously
- Detailed fiber fly overs before and after sampling
- M3 ~10cm resolution bathymetry

Iguanas Vent Field, Galápagos 2022

Proposed DTS deployment at MEF, Summer 2025

Sensor (BARS)

> Autonomous CTD (4) > Autonomous Current Meter (4)

20

40

129°5'58"W 129°5'56"W 129°6'0"W

- Determine Scientific Objective/Fiber Deployment configuration
- Decouple DTS interrogator and Reel and/or Order new lengths of fiber
- Construct a DTS Platform and JB->DTS Power cable
- Access to a TD for DTS Temperature Calibrations (at depth)

Fiber Deployment Configurations

Venting Focused

Dive Time Considerations:

- Length of deployed fiber
- Terrain/Configuration complexity
- Fiber deployment method

Across Axial Valley

Maximum Coverage

*Consider conflict with other cables/maintenance

At Depth Fiber Deployment

SuBastian

At Depth Fiber Recovery 15

Stian

Suba

- Determine Scientific Objective/Fiber Deployment configuration
- Decouple DTS interrogator and Reel and/or Order new lengths of fiber
- Construct a DTS Platform and JB->DTS Power cable
- Access to a TD for DTS Temperature Calibrations (at depth)

- Determine Scientific Objective/Fiber Deployment configuration
- Decouple DTS interrogator and Reel and/or Order new lengths of fiber
- Construct a DTS Platform and JB->DTS Power cable
- Access to a TD for DTS Temperature Calibrations (at depth)

- Determine Scientific Objective/Fiber Deployment configuration
- Decouple DTS interrogator and Reel and/or Order new lengths of fiber
- Construct a DTS Platform and JB->DTS Power cable
- Access to a TD for DTS Temperature Calibrations (at depth)

- Determine Scientific Objective/Fiber Deployment configuration
- Decouple DTS interrogator and Reel and/or Order new lengths of fiber
- Construct a DTS Platform and JB->DTS Power cable
- Access to a TD for DTS Temperature Calibrations (at depth)

- Determine Scientific Objective/Fiber Deployment configuration
- Decouple DTS interrogator and Reel and/or Order new lengths of fiber
- Construct a DTS Platform and JB->DTS Power cable
- Access to a TD for DTS Temperature Calibrations (at depth)

Questions?

Contact: Johann Becker Beckerj@uri.edu

Acknowledgements

- Kingdom of Tonga
- Fundación Charles Darwin
- Parque Nacional Galapagos, Ecuador
- INOCAR
- Dave Casagrande, University of Rhode Island
- Todd Gregory, Gregory Designs LLC
- Captain & Crew of R/V Falkor (too)
- Pilots & Engineers of ROV SuBastian
- Captain & Crew of R/V Thomas G. Thompson
- Pilots & Engineers of ROV JASON
- National Science Foundation (Lau cruise support)
- Office of Naval Research (DTS support)

Earth tide signal in orange SBE pressure data in blue

Appendix 1: Anti-Stokes

Appendix 2: Temperature Calculation from Raman Scattering

Tidal correlation was found to increase

Appendix 3: Measured Tidal Variation v. Predicted Tidal Variation

