Water column observations to better constrain overturning circulations

Jody Klymak University of Victoria

Science question: How strong is overturning circulation?

a) Strait of Georgia - summer

- Pawlowicz et al 2007:
- Surface exchange?
 - Estuary
 - 3-6 month residence time
- Deep exchange?
 - Set by deep water renewals
 - 1-3 years residence time ->
 65 days?

Salish Sea overturning circulations drivers

- Drivers:
 - Ocean
 - River
 - Mixing
 - Wind, but second order for overturning/renewal

Salish Sea overturning circulations drivers

Drivers:

- Ocean
 - Observations and regional simulations
- River
 - Mostly Fraser but local rivers matter too
- Mixing
 - Major challenge
 - Sets what water can renew at sills
 - Sets the density and water properties in the basins

Overturning sensitivity to mixing

- Mixing
 - Strong feedback not he mean state
 - Hard to parameterize correctly
 - e.g. Soontiens and Allen, 2017

Overturning sensitivity to mixing

- Mixing
 - Strong feedback not he mean state
 - Hard to parameterize correctly (eg Soontiens and Allen, 2017)
 - Lateral/vertical mixing hard with nearly vertical density surfaces

Observatory?

Time series view: Saanich BPS, 180m

- Qualitatively useful
- Hard to quantify
- Harder for models to compare
 - Timing
 - Value and amount

Profiling timeseries view

- Same qualitative story, but much more information
- Can quantify amounts and rates of water mass changes
- Can use profiles to quantify mixing rates (Manning, Hamme, et al 2010)

- 10.0 <u>O</u>

9.8

Profiling timeseries view

- Water column events more clear
- Can get at consumption rates with full water column
- Better to compare with numerical simulations
 - Amount of water or gasses that comes in as important as timing

- 3.0

- 2.5

2.0

Profiling timeseries view: Surface dynamics

Observatory?

- 4 profiling moorings:
 - 8*\$450k =\$3.6M
- Residence time budgets for each basin
 - Like Pawlowicz et al 2007, except more resolution, and other basins
- Upper ocean dynamics each basin
 - Biooptics, gasses, physics
- Much better constraint and assimilative/ML ability for models

Observatory?

- 4 profiling moorings:
 - 8*\$450k =\$3.6M
- Residence time budgets for each basin
 - Like Pawlowicz et al 2007, except more resolution, and other basins
- Upper ocean dynamics each basin
 - Biooptics, gasses, physics
- Much better constraint and assimilative/ML ability for models

- Bonus:
 - ADCP moorings at controlling straits
 - Must be high frequency: transport of properties
 - 4*\$300k =\$1.2 M

